🔿 Meta

2023 Environmental Data Index

2023 Meta Sustainability Report

Forward looking statements

This report covers only Meta's business and does not address the performance or operations of our suppliers, contractors or partners. Statements regarding targets, goals and commitments are aspirational and may also be based on estimates and assumptions under developing standards that may change in the future. As such, no guarantees or promises are made that they will be met or successfully executed, and actual results may differ, possibly materially. In addition, data, statistics and metrics included in this report are non-audited estimates, not necessarily prepared in accordance with generally

accepted accounting principles, continue to evolve, and may be based on assumptions believed to be reasonable at the time of preparation but may be subject to revision. This report has not been externally assured or verified by an independent third party unless otherwise noted. This report represents Meta's current policy and intent and is not intended to create legal rights or obligations.

In this report, our use of the terms "material," "materiality" and other similar terms is consistent with that of GRI, SASB, TCFD and other standards referenced in the preparation of this report, or refers to

topics that reflect Meta's This report contains forwardsignificant economic, social looking statements. All and environmental impacts or statements contained in this that substantially influence the report other than statements assessments and decisions of a of historical fact, including diverse set of stakeholders. We statements regarding our future are not using these terms as they results of operations and financial are used under the securities or position, our business strategy and plans, and our objectives other laws of the United States or any other jurisdiction or as these for future operations, as well terms are used in the context statements regarding targets, goals and commitments, are of financial statements and financial reporting. This report forward-looking statements. is not comprehensive, and for The words "believe," "may," "will," "estimate," "continue," that reason, should be read in "anticipate," "intend," "expect," conjunction with our most recent Annual Report on Form 10-K, our and similar expressions are subsequent reports on Forms intended to identify forward-10-Q and 8-K and other filings looking statements. We have based these forward-looking made with the Securities and Exchange Commission (SEC).

statements largely on our current expectations and projections about future events and trends that we believe may affect our financial condition, results of operations, business strategy, short-term and longterm business operations and objectives, and financial needs.

Especially with respect to the matters discussed in this report, many factors and uncertainties relating to our operations and business environment, all of which are difficult to predict and many of which are outside of our control, influence whether any forward-looking statements can or will be achieved.

Any one of those factors, including as the result of changes in circumstances, estimates that turn out to be incorrect, standards of measurement that change over time, assumptions not being realized, or other risks or uncertainties, could cause our actual results, including the achievement of targets, goals or commitments, to differ materially from those expressed or implied in writing in any forward-looking statements made by Meta or on its behalf.

Forward looking statements

We describe these risks and uncertainties in our SEC filings, including our most recent Annual Report on Form 10-K and our subsequent reports on Forms 10-Q and 8-K, as well as, with respect to targets, goals and commitments outlined in this report or elsewhere, the challenges and assumptions that are either identified in this report or that we are unable to foresee at this time. We cannot assure that the results reflected or implied by any forward-looking statement will be realized or, even if substantially realized, that those results will have the forecasted or expected consequences and effects.

We also caution that the important factors referenced therein may not include all of the factors that are important to readers. Our forward-looking statements speak only as of the date of this report or as of the date they are made, and we undertake no obligation to update this report to reflect subsequent events or circumstances, except as required by law. Given these risks and uncertainties, readers are cautioned not to place undue reliance on such forward-looking statements.

This report may contain links to other internet sites or references to third parties.

Such links or references are not incorporated by reference to this report, and we can provide no assurance as to their accuracy. The use or inclusion of the information is also not intended to represent endorsements of any apps and services.

1.1 GHG emissions ^{1,2,3,4,5}

Total GHG emissions

Market-based (in metri	c tons CO₂e)							2017	2018	2019	2020	2021	2022		
	2017	2018	2019	2020	2021	2022	GHG intensity per monthly active person	0.00029	0.00015	0.0008	0.00001	0.00002	0.0000		
Net total	1,096,000	1,008,000	4,330,000	4,984,000	5,740,244	8,453,471	GHG intensity per					0.40	0.58		
Carbon removal (carbon credits applied) ⁷	-	-	-	145,000	90,000	80,000	million USD of revenue - - - 0.0061						0.005		
Total	1,096,000	1,008,000	4,330,000	5,129,000	5,830,244	8,533,471									
Scope 1	25,000	42,000	44,000	29,000	55,173	66,934	1. Prior to 2021, values were rounded and totals were calculated before rounding throughout this report.								
Percent of total GHG emissions (Scopes 1-3)	2%	4%	1%	1%	1%	1%	 2. "Other data center-related facilities" includes facilities where Meta used less than 100,000 MWh of electricity in the reporting year, such a warehouses or colocation facilities. Owned, online data centers are always reported by site, even if they were below this threshold. 3. Meta's methodology for calculating greenhouse gas emissions can be found on page 15. 								
Scope 2	591,000	314,000	208,000	9,000	2,487	273	4. Prior to 2018, Scope 3 em categories in Scope 3 for reg	nissions included on porting years 2019 t	ly business travel, em to the present.	ployee commute and	construction. Meta	includes emissions f	rom all releva		
Percent of total GHG emissions (Scopes 1-3)	54%	31%	5%	<1%	<1%	<1%	5. In the 2022 reporting year	r, several updates to	o reporting were appli	ed to the 2021 and la	ater inventories.	_			
Scope 3	480,000	652,000	4,078,000	5,091,000	5,772,583	8,466,264	(a) Data from life cycle as (b) 2021 category 1, 2, 8, (c) All Scope 3 Categorie	ssessments for our & 11 emissions wer s were broken out i	hardware and sold pro e recalculated with hi ndividually to improve	oducts were used to gher quality data inp e transparency and el	calculate our Scope uts to improve accur iminate the previous	3 emissions. acy. ly reported "Other A	opplicable		
Percent of total GHG emissions (Scopes 1-3)	44%	65%	94%	99%	99%	99%	Categories" (d) Emissions associated	with third-party co	onstruction-related en	ergy usage were reca	tegorized into Categ	ory 1 instead of Cat	egory 3 to be		
Location-based (in met	ric tons CO2e)	1	1	1			align with the GHG Protocol Scope 3 Category Boundaries. (e) Emissions associated with overhead electricity load at leased data centers was recategorized into Category 8 Instead of Category 3 to be								
	2017	2018	2019	2020	2021	2022	align with the GHG Proto (f) 2021 Category 6 emis	ocol Scope 3 Catego sions were recalcul	ory Boundaries. ated to incorporate m	ore accurate and tra	nsparent methodolog	gies for applying sus	tainable aviat		
Total	1,387,000	1,983,000	6,295,000	8,559,000	10,163,476	14,007,222	 (g) 2021 Total Fuel and Energy Consumption were recalculated to eliminate third-party party construction-related fuel use outside of Meta' Operational Control. 								

Market-based (in metr	ic tons CO2e)							2017	2018	2019	2020	2021	2022		
	2017	2018	2019	2020	2021	2022	GHG intensity per monthly active person	0.00029	0.00015	0.0008	0.00001	0.00002	0.0000		
Net total	1,096,000	1,008,000	4,330,000	4,984,000	5,740,244	8,453,471	GHG intensity per					0.49	0.58		
Carbon removal (carbon credits applied) ⁷	-	-	-	145,000	90,000	80,000	GHG intensity per MWh	_	_		_	0.0061	0.005		
Total	1,096,000	1,008,000	4,330,000	5,129,000	5,830,244	8,533,471									
Scope 1	25,000	42,000	44,000	29,000	55,173	66,934	 Prior to 2021, values were rounded and totals were calculated before rounding throughout this report. "Other data center-related facilities" includes facilities where Meta used less than 100 000 MWh of electricity in the reporting year, such 								
Percent of total GHG emissions (Scopes 1-3)	2%	4%	1%	1%	1%	1%	 2. "Other data center-related facilities" includes facilities where Meta used less than 100,000 MWh of electricity in the reporting year, such a warehouses or colocation facilities. Owned, online data centers are always reported by site, even if they were below this threshold. 3. Meta's methodology for calculating greenhouse gas emissions can be found on page 15. 								
Scope 2	591,000	314,000	208,000	9,000	2,487	273	4. Prior to 2018, Scope 3 em categories in Scope 3 for rep	nissions included only porting years 2019 to	y business travel, em o the present.	ployee commute and	l construction. Meta	includes emissions f	rom all releva		
Percent of total GHG emissions (Scopes 1-3)	54%	31%	5%	<1%	<1%	<1%	5. In the 2022 reporting yea	r, several updates to	reporting were appli	ed to the 2021 and la	ater inventories.				
Scope 3	480,000	652,000	4,078,000	5,091,000	5,772,583	8,466,264	 (a) Data from life cycle as (b) 2021 category 1, 2, 8, (c) All Scope 3 Categorie 	ssessments for our h , & 11 emissions were es were broken out in	erdware and sold pro recalculated with hi dividually to improve	oducts were used to gher quality data inp e transparency and el	calculate our Scope uts to improve accur iminate the previous	3 emissions. acy. ly reported "Other A	opplicable		
Percent of total GHG emissions (Scopes 1-3)	44%	65%	94%	99%	99%	99%	Categories" (d) Emissions associated	with third-party cor	struction-related end	ergy usage were reca	itegorized into Categ	ory 1 instead of Cat	egory 3 to be		
Location-based (in me	tric tons CO2e)	1		I	1		 align with the GHG Protocol Scope 3 Category Boundaries. (e) Emissions associated with overhead electricity load at leased data centers was recategorized into Category 8 Instead of Category 3 to be 								
	2017	2018	2019	2020	2021	2022	align with the GHG Proto (f) 2021 Category 6 emis	ocol Scope 3 Catego sions were recalcula	ry Boundaries. ted to incorporate m	ore accurate and tra	nsparent methodolog	gies for applying sus	tainable aviat		
Total	1,387,000	1,983,000	6,295,000	8,559,000	10,163,476	14,007,222	222 (g) 2021 Total Fuel and Energy Consumption were recalculated to eliminate third-party party construction-related fuel use outside of Meta' Operational Control.								

Greenhouse gas intensity

Market-based Scope 1 & 2 emissions (in metric tons CO₂e/unit of key performance indicators)

ant

etter

oetter

tion fuel

Operational GHG	emissions						Market-based Scope	1 & 2 emissions (ir	n metric tons CO20	e) ⁶ (Continued)						
Market-based Scope 1	& 2 emissions (ir	n metric tons CO2	2 e) ⁶					2017	2018	2019	2020	2021	2022			
	2017	2018	2019	2020	2021	2022	Prineville, OR	239,000	137,000	1,000	3,000	3,862	4,501			
Total operational GHG emissions	616,000	356,000	252,000	38,000	57,661	67,207	Leased data center facilities	98,000	102,000	188,000	-	25	72			
Data centers total	568,000	314,000	207,000	14,000	25,240	22,163	Other data center- related facilities	40,000	17,000	4,000	2,000	40	166			
Altoona, IA	1,000	1,000	2,000	1,000	2,118	920	Offices total	48,000	42,000	44,000	24,000	32,421	45,04			
Clonee, Ireland	<500	<500	<500	1,000	1,364	264										
Dekalb, IL	-	-	-	-	0	1,859	6. In the 2019 reporting yea	ar, three updates to re	porting were applied	d to 2017 (baseline y	ear) and later invento	ries:				
Eagle Mountain, UT	-	-	-	-	3,250	3,609	(a) Vehicles operated by commute. After re-visit	y the Transportation T ing Meta's operationa	eam in support of co I control of these ve	ommuting and inter- hicles, it was determ	campus travel were p ined that they should	reviously counted in be accounted for in	Scope 3 – En Scope 1.			
Forest City, NC	136,000	53,000	9,000	<500	1,401	587	(b) It was determined th Recalculations have bee	hat Meta overestimate en applied to the inver	ed natural gas emiss ntory to remove thes	ons by including est e inaccuracies.	mates for offices tha	es that do not in fact use natural gas.				
Fort Worth, TX	1,000	1,000	1,000	<500	779	625	(c) Fugitive emissions fr	rom refrigerant losses	at offices not under	Meta operational co	ntrol were moved fro	m Scope 2 to Scope	23.			
Gallatin, TN	-	-	-	-	-	138										
Richmond, VA	-	-	<500	<500	4,822	821										
Huntsville, AL	-	_	-	-	261	1,788										
Los Lunas, NM	-	1,000	1,000	<500	1,067	1,298										
Luleå, Sweden	<500	<500	<500	<500	374	79										
New Albany, OH	-	-	<500	2,000	408	2,605										
Newton County, GA	-	-	-	-	300	535										
Odense, Denmark	-	-	<500	<500	2,824	655										
Papillion, NE	-	<500	<500	3,000	2,348	1,642										

mployee

Market-based vs. Location-based

Scope 2 emissions (in metric tons CO₂e)

	2018		20	019	20	20	20	021	20)22
	Market-based	Location-based								
Total facilities GHG emissions	314,000	1,241,000	205,000	1,885,000	9,000	2,718,000	2,487	3,080,194	273	3,921,611
Data centers total	308,000	1,181,000	197,000	1,813,000	2,000	2,650,000	2,487	2,987,964	273	3,821,450
Altoona, IA	-	346,000	-	483,000	-	555,000	-	425,377	-	474,826
Clonee, Ireland	-	82,000	-	143,000	-	159,000	-	187,475	-	178,367
Dekalb, IL	-	-	-	-	-	-	-	2,122	-	8,087
Eagle Mountain, UT	-	-	-	-	-	-	-	62,962	-	145,985
Forest City, NC	52,000	201,000	8,000	208,000	-	202,000	-	165,026	-	143,754
Fort Worth, TX	-	212,000	-	295,000	-	399,000	-	378,198	-	355,696
Gallatin, TN	-	-	-	-	-	-	-	-	-	2,664
Richmond, VA	137,000	-	-	3,000	-	69,000	-	146,396	-	204,494
Huntsville, AL	-	-	-	-	-	-	-	32,464	-	156,885
Los Lunas, NM	-	12,000	-	135,000	-	266,000	-	276,795	-	347,033
Lueleå, Sweden	-	7,000	-	6,000	-	7,000	-	3,917	-	2,782
New Albany, OH	-	-	-	20,000	-	157,000	-	229,785	-	335,561
Newton County, GA	-	-	-	-	-	-	-	84,402	-	258,773
Odense, Denmark	-	1,000	<500	18,000	-	57,000	2,487	51,171	273	49,198
Papillion, NE	-	3,000	_	101,000	-	294,000	-	329,674	-	458,460

	2018		2019		2020		20	21	2022	
	Market-based	Location-based								
Prineville, OR	-	145,000	-	167,000	-	200,000	-	245,996	-	284,462
Leased data center facilities	102,000	128,000	188,000	193,000	-	223,000	-	272,848	-	323,060
Other data center-related facilities	17,000	44,000	1,000	41,000	2,000	62,000	-	93,354	-	91,364
Offices total	6,000	60,000	8,000	72,000	7,000	68,000	-	92,230	-	100,160

Scope 2 emissions (in metric tons CO₂e) (Continued)

Value chain GHG emis	sions						Scope 3 emissions (in Metr	ic Tons CO2e) ((Continued)				
Scope 3 emissions (in Metr	ic Tons CO2e) ^{1, 5,}	7, 8						2017	2018	2019	2020	2021	2022
	2017	2018	2019	2020	2021	2022	Category 9: Downstream	_	_	5,000	10,000	37	16
Total	480,000	652,000	4,078,000	5,091,000	5,772,583	8,466,264	Distribution ⁵			3,000	10,000	57	
Category 1: Purchased Goods & Services ^{5, 8}	-	-	1,428,000	1,846,000	2,956,909	2,545,466	Of Total (in %)	-	-	<1%	<1%	<1%	<1%
Of Total (in %)	-	_	35%	36%	51%	30%	Category 11: Use of Sold Products ⁵	-	-	5,000	390,000	106,232	62,30
Category 2: Capital Goods ^{5, 8}	-	-	1,671,000	2,516,000	2,466,041	5,346,583	Of Total (in %)	-	-	<1%	8%	2%	<1%
Of Total (in %)	-	_	41%	49%	43%	63%	Category 12: End-of-Life Treatment of	-	-	<500	<500	1,267	3,775
Category 3: Fuel & Energy- Related Activities ⁵	-	-	264,000	56,000	10,483	12,658	Sold Products ^s Of Total (in %)	_	_	<1%	<1%	<1%	<1%
Of Total (in %)	-	-	6%	1%	<1%	<1%							
Category 4: Upstream Transportation and	-	-	65,000	49,000	180,183	176,636	1. Prior to 2021, values were roun 5. In the 2022 reporting year, sev	nded and totals we veral updates to re	re calculated before porting were applied	rounding throughou to the 2021 and lat	it this report. er inventories.		
Of Total (in %)	_	_	2%	1%	3%	2%	 (a) Data from life cycle assess (b) 2021 Category 1, 2, 8, & 11 (c) All Scope 3 categories were 	sments for our har l emissions were re	dware and sold produ ecalculated with high	ucts were used to ca er quality data inpu	alculate our Scope 3 ts to improve accura	emissions. icy. reported "Other Ar	onlicable
Category 5: Waste Generated in Operations ^{5, 8}	-	-	4,000	10,000	18,430	18,519	Categories." (d) Emissions associated with	third-party const	ruction-related energ	y usage were recate	egorized into Catego	ory 1 instead of Cate	egory 3 to be
Of Total (in %)	-	-	<1%	<1%	<1%	<1%	 align with the GHG Protocol S (e) Emissions associated with 	Scope 3 Category overhead electric	Boundaries. ity load at leased dat	a centers was recat	egorized into Catego	ory 8 Instead of Cat	egory 3 to be
Category 6: Business Travel ^{5, 7}	246,000	397,000	529,000	129,000	8,653	251,807	align with the GHG Protocol S (f) 2021 Category 6 emissions emissions reductions.	Scope 3 Category s were recalculated	Boundaries. d to incorporate more	e accurate and trans	sparent methodologi	es for applying sust	ainable aviat
Of Total (in %)	-	-	13%	3%	<1%	3%	(g) 2021 Total Fuel and Energy Control	y Consumption we	ere recalculated to eli	minate third-party	construction-related	fuel use outside of	Meta's Opera
Category 7: Employee Commuting ⁸	43,000	71,000	90,000	61,000	23,163	45,054	7. Sustainable Aviation Fuel was p	purchased in 2022	and associated emis	sions reductions are	e reflected in the inv	entory.	
Of Total (in %)	-	_	2%	1%	<1%	<1%	 8. In the 2022 reporting year, the (a) A new Category 5 estimation 	ion methodology v	s to the methodology was developed to imp	v were applied: prove completeness	across all operation	S.	
Category 8: Upstream Leased Assets ⁵	-	-	16,000	24,000	1,185	3,444	(b) Employee commuting now (c) a new Category 1 and Cate	v includes emission egory 2 methodolo	ns calculations on a w ogy was developed to	vell-to-tank basis. improve the compl	leteness, accuracy ar	nd reliability of the u	underlying ac
Of Total (in %)	-	-	<1%	<1%	<1%	<1%							

2023 Meta Sustainability Report

22 % 06 % 5

etter oetter tion fuel

rational

octivity

2.1 Electricity							Electricity consumption by	facility (in MWI	n) (Continued)				
Electricity consumpt	tion							2017	2018	2019	2020	2021	2022
Electricity consumption	by facility (In MW	h)					Papillion, NE	-	5,000	178,000	519,000	736,810	1,007,635
	2017	2018	2019	2020	2021	2022	Prineville, OR	426,000	488,000	573,000	686,000	898,409	982,177
Total electricity consumption	2,462,000	3,427,000	5,140,000	7,170,000	9,420,839	11,508,131	Leased data center facilities	359,000	432,000	647,000	795,000	964,650	1,105,834
Electricity from grid (%)	100%	100%	100%	100%	100%	100%	Other data center-related facilities	135,000	133,000	113,000	206,000	249,843	256,939
Data centers total	2,360,000	3,245,000	4,918,000	6,966,000	9,117,122	11,167,416	Offices Total	102,000	181,000	222,000	204,000	303,717	340,657
Altoona, IA	500,000	612,000	853,000	980,000	950,705	1,043,606	Electricity intensity (in	n MWh/unit c	f key perform	ance indicato	rs)		
Clonee, Ireland	1,000	200,000	382,000	487,000	634,648	668,290		2017	2018	2019	2020	2021	2022
Dekalb, IL	-	-	-	-	4,724	16,934	Electricity intensity per monthly active person	-	-	-	-	0.0026	0.0031
Eagle Mountain, UT	-	-	-	-	229,946	504,049	Electricity intensity per	_	_	_	_	79.9	98.7
Forest City, NC	433,000	547,000	614,000	595,000	580,842	492,786	million USD revenue						
Fort Worth, TX	189,000	461,000	695,000	941,000	1,014,447	959,419	Electricity mix (in % of	total electric	city used)				
Gallatin, TN	-	-	_	_	0	6,264		2017	2018	2019	2020	2021	2022
Richmond, VA	_	-	10,000	204,000	515,270	701,003	Renewable	51%	75%	86%	100%	100%	100%
Huntsville. AL	_	_	_	_	85.286	368.841	Non-renewable	49%	25%	14%	0%	0%	0%
Los Lunas NM	_	26,000	289.000	571 000	717 932	929 488	2.2 Total energy consu	med					
	701.000	777.000	777.000	760.000	706.054	267.471	Energy consumption (i	n GJ)⁵					
	501,000	557,000	575,000	569,000	506,054	207,471	-	2017	2018	2019	2020	2021	2022
New Albany, OH	-	-	38,000	270,000	511,414	702,694	Total energy consumption	_	_	_	27.075.000	34,882,163	42,560,221
Newton County, GA	-	-	-	-	215,279	636,266					479.000	957.040	1170 70 /
Odense, Denmark	-	4,000	128,000	343,000	500,863	517,718	Direct energy consumption	-	-	-	458,000	853,042	1,138,/94
							Indirect energy consumption	-	-	-	26,638,000	34,029,121	41,421,428

221 94

2.3 Fuels

Fuel consumption ⁵

	2017	2018	2019	2020	2021	2022
Natural gas (therms)	-	-	-	-	6,153,856	7,539,592
Diesel — diesel fuel (gal)	-	-	-	-	363,082	1,376,871
Diesel — distillate fuel oil No.4 (gal)	_	-	-	_	842,460	724,151
Gasoline (gal)	_	-	_	-	52,375	119,955
Propane (gal)	-	-	-	-	0	0
Renewable fuels						

Hydrotreated vegetable oil (gal) - - - - - 0 0

2.4 Data center operations and design

Power usage effectiveness (PUE)

	2017	2018	2019	2020	2021	2022
PUE (data center energy efficiency)	1.10	1.11	1.11	1.10	1.09	1.08

Sustainable design

Green building standards for data centers and offices (% of sq ft covered by green building standards and/or EnMS)

	2017	2018	2019	2020	2021	2022
Total	-	-	-	-	98%	99%
Data centers (LEED Gold or above, or ISO 50001)	-	-	-	-	100%	100%
Offices (LEED Gold or above, or ISO 50001)	-	-	-	-	97%	98%

5. In the 2022 reporting year, several updates to reporting were applied to the 2021 and later inventories
(a) Data from life cycle assessments for our hardware and sold products were used to calculate our Scope 3 emissions.
(b) 2021 Category 1, 2, 8, & 11 emissions were recalculated with higher quality data inputs to improve accuracy.
(c) All Scope 3 categories were broken out individually to improve transparency and eliminate the previously reported "Other Applicable Cat
(d) Emissions associated with 3rd party construction related energy usage were recategorized into Category 1 instead of Category 3 to bett
 with the GHG Protocol Scope 3 Category Boundaries
(e) Emissions associated with overhead electricity load at leased data centers was recategorized into Category 8 Instead of Category 3 to b
align with the GHG Protocol Scope 3 Category Boundaries
(f) 2021 Category 6 emissions were recalculated to incorporate more accurate and transparent methodologies for applying sustainable aviat
emissions reductions
(g) 2021 Total Fuel and Energy Consumption were recalculated to eliminate 3rd party construction-related fuel use outside of Meta's Operat
 Control

3.1 Water withdrawal	9						Water withdrawal by facility (in cubic meters)							
Water withdrawal								2017	2018	2019	2020	2021	2022	
Water withdrawal by facili	i ty (in cubic mete	rs)					Leased data center facilities	473,000	533,000	1,011,000	645,000	603,629	772,921	
	2017	2018	2019	2020	2021	2022	Other data center-related facilities	85,000	264,000	54,000	42,000	197	0	
Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	Offices total	470,000	631,000	699,000	726,000	1,624,773	1,275,021	
Data centers total	1,139,000	1,730,000	2,731,000	3,000,000	3,417,791	3,618,003	Water withdrawal by	source						
Altoona, IA	106,000	139,000	145,000	151,000	140,231	199,378	Water withdrawal by source	ce (in cubic mete	ers)					
Clonee, Ireland	10,000	188,000	395,000	615,000	927,914	838,654		2017	2018	2019	2020	2021	2022	
Dekalb, IL	-	-	-	-	0	29,659	Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	
Eagle Mountain, UT	-	-	-	-	57,701	89,366	From surface water		-	_	_	0	0	
Forest City, NC	129,000	99,000	85,000	68,000	64,053	62,853	From groundwater	_	_	_	37,000	33,285	37,343	
Fort Worth, TX	98,000	269,000	322,000	300,000	253,520	346,115	From seawater	_	_	_	_	0	0	
Gallatin, TN	-	-	-	-	0	0	From produced water	_	_	_	_	0	0	
Richmond, VA	-	-	-	42,000	80,478	54,994	From third-party water (e.g.				7 600 000	F 000 270	4 055 000	
Huntsville, AL	-	-	-	-	38,520	103,501	municipal water supply)	-	-	-	3,689,000	5,009,279	4,855,680	
Los Lunas, NM	-	25,000	92,000	140,000	152,666	161,436	Water usage effective	eness (WUE)						
Luleå, Sweden	66,000	53,000	58,000	49,000	38,922	25,358		2017	2018	2019	2020	2021	2022	
New Albany, OH	_	-	33,000	35,000	121,194	87,413	Annual data center WUE	0.24	0.27	0.27	0.30	0.26	0.20	
Newton County, GA	_	-	-	-	105,121	77,203	9. Not included in Meta's 2022 w	vater withdrawal nu	mbers are an additio	nal 1,780,000 cubic	meters of water wi	ithdrawn for the con	struction of Meta	
Odense, Denmark	_	-	266,000	360,000	373,355	427,937	data centers.							
Papillion, NE	-	-	62,000	108,000	106,339	100,912								
Prineville, OR	172,000	160,000	208,000	445,000	353,951	240,302								

Water withdrawal int	t ensity (in cub	ic meters/unit	of key perfor	mance indicate	ors)		Water consumption fr	rom areas wit	th water stress	s (in cubic me	ters)		
	2017	2018	2019	2020	2021	2022		2017	2018	2019	2020	2021	2022
Water withdrawal per monthly active person	0.000755	0.001020	0.001200	0.001130	0.001405	0.001308	Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,18
Water withdrawal per million USD revenue	_	_	-	-	42.8	42.0	From areas with high or extremely high baseline water stress	-	-	-	-	162,477	443,150
Water withdrawal fro	om areas with	water stress	(in cubic mete	rs)			From areas without water	_	_	_	_	2,406,372	2,195,03
	2017	2018	2019	2020	2021	2022	stress						
Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	3.3 Water discharge						
From areas with high or							Water discharge by so	burce (in cubi	c meters)				
extremely high baseline water stress	-	-	-	-	1,390,166	1,130,181		2017	2018	2019	2020	2021	2022
From areas without water	_				3 652 398	3 762 8/13	Total water discharge	-	-	-	1,524,000	2,473,716	2,254,83
stress					3,032,330	3,702,043	To surface water	-	-	-	-	0	0
Recycled water (in cu	ubic meters)						To groundwater	_	_	_	_	0	0
	2017	2018	2019	2020	2021	2022	_ To seawater	_	_	_	_	0	0
Total water recycled	469,000	673,000	854,000	643,000	580,223	265,906	To third-party water (e.g.						
3.2 Water consumpti	on						municipal sewers)	-	-	-	1,524,000	2,473,716	2,254,83
Water consumption (in cubic mete	rs)					Water discharge to ar	eas with wat	er stress (in cu	ubic meters)			
	2017	2018	2019	2020	2021	2022	-	2017	2018	2019	2020	2021	2022
	070.000	4.070.000	4.074.000		0.500.040	0.070.400	Total water discharge	_	-	_	1,524,000	2,473,716	2,254,8
Iotal water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,188	To preas with water stress					863.836	687.03
Data centers total	-	-	-	2,197,000	162,477	2,510,686							007,03
Offices total	_	_	_	73 000	2,406,372	127 502	Io areas without water	_	-	-	-	1,609,879	1,567,80

Water withdrawal int	t ensity (in cub	ic meters/unit	of key perform	mance indicate	ors)		Water consumption fr	rom areas wit	h water stres	s (in cubic me	ters)		
	2017	2018	2019	2020	2021	2022		2017	2018	2019	2020	2021	2022
Water withdrawal per monthly active person	0.000755	0.001020	0.001200	0.001130	0.001405	0.001308	Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,18
Water withdrawal per million USD revenue	-	-	-	-	42.8	42.0	 From areas with high or extremely high baseline water stress 	-	-	-	-	162,477	443,150
Water withdrawal fro	om areas with	water stress ((in cubic meter	rs)			From areas without water	-	_	_	_	2,406,372	2,195,03
	2017	2018	2019	2020	2021	2022	stress						
Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	3.3 Water discharge						
From areas with high or							Water discharge by so	burce (in cubi	c meters)				
extremely high baseline water stress	-	-	-	-	1,390,166	1,130,181		2017	2018	2019	2020	2021	2022
From areas without water	_	_	_	_	3 652 398	3 762 8/13	Total water discharge	-	-	-	1,524,000	2,473,716	2,254,83
stress					3,032,330	3,702,043	To surface water	-	-	-	-	0	0
Recycled water (in cu	ubic meters)						To groundwater		_	_	_	0	0
	2017	2018	2019	2020	2021	2022	_ To seawater	_	_	_	_	0	0
Total water recycled	469,000	673,000	854,000	643,000	580,223	265,906	To third-party water (e.g.						
3.2 Water consumpti	on						municipal sewers)	-	-	-	1,524,000	2,473,716	2,254,83
Water consumption (in cubic meter	rs)					Water discharge to ar	eas with wat	er stress (in cu	ubic meters)			
	2017	2018	2019	2020	2021	2022	-	2017	2018	2019	2020	2021	2022
	070.000	4.070.000	4.074.000		0.500.040	0.070.400	Total water discharge	-	-	-	1,524,000	2,473,716	2,254,83
I otal water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,188	To areas with water stress	_	_	_	_	863.836	687.03
Data centers total	-	-	-	2,197,000	162,477	2,510,686							007,00
Offices total	-	-	-	73,000	2.406.372	127,502	Io areas without water	-	-	-	-	1,609,879	1,567,80

Water withdrawal int	tensity (in cub	ic meters/unit	of key perform	mance indicate	ors)		Water consumption fr	om areas wit	h water stress	s (in cubic me	ters)		
	2017	2018	2019	2020	2021	2022		2017	2018	2019	2020	2021	2022
Water withdrawal per monthly active person	0.000755	0.001020	0.001200	0.001130	0.001405	0.001308	Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,18
Water withdrawal per million USD revenue	_	-	-	-	42.8	42.0	From areas with high or extremely high baseline water stress	-	-	-	_	162,477	443,150
Water withdrawal fro	om areas with	water stress	in cubic meter	rs)			From areas without water	_	_	_	_	2,406,372	2,195,03
	2017	2018	2019	2020	2021	2022	stress					,,-	,,
Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	3.3 Water discharge						
From areas with high or	es with high or					Water discharge by source (in cubic meters)							
extremely high baseline water stress	-	-	-	-	1,390,166	1,130,181		2017	2018	2019	2020	2021	2022
From areas without water		_	_	_	3 652 398	3 762 843	Total water discharge	-	-	-	1,524,000	2,473,716	2,254,83
stress					3,032,330	3,702,043	To surface water	-	-	-	-	0	0
Recycled water (in cu	ubic meters)						_ To groundwater	_	_	_	_	0	0
	2017	2018	2019	2020	2021	2022	_ To seawater	_	_	_	_	0	0
Total water recycled	469,000	673,000	854,000	643,000	580,223	265,906	To third-party water (e.g.						
3.2 Water consumpti	ion						municipal sewers)	-	-	-	1,524,000	2,473,716	2,254,83
Water consumption (íin cubic meter	·s)					Water discharge to are	eas with wat	er stress (in cu	ubic meters)			
	2017	2018	2019	2020	2021	2022	-	2017	2018	2019	2020	2021	2022
-	070.000	4.070.000	4.074.000	2 202 000	2 5 6 0 4 0	0.070.400	Total water discharge	_	_	-	1,524,000	2,473,716	2,254,8
Iotal water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,188	To areas with water stress	_	_	_	_	863 836	687.03
Data centers total	-	-	-	2,197,000	162,477	2,510,686							
Offices total	_	_	-	73.000	2,406,372	127 502	io areas without water	-	-	-	-	1,609,879	1,567,80

Water withdrawal int	tensity (in cubi	ic meters/unit	of key perform	mance indicato	ors)		Water consumption f	rom areas wi [.]	th water stress	s (in cubic met	ters)		
	2017	2018	2019	2020	2021	2022		2017	2018	2019	2020	2021	2022
Water withdrawal per monthly active person	0.000755	0.001020	0.001200	0.001130	0.001405	0.001308	Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,18
Water withdrawal per million USD revenue	-	-	-	-	42.8	42.0	From areas with high or extremely high baseline water stress	-	-	_	_	162,477	443,150
Water withdrawal from areas with water stress (in cubic meters)							From areas without water	_	_	_	_	2,406,372	2,195,03
	2017	2018	2019	2020	2021	2022	stress						
Total water withdrawal	1,609,000	2,367,000	3,430,000	3,726,000	5,042,564	4,893,023	3.3 Water discharge						
From areas with high or							Water discharge by so	ource (in cubi	c meters)	1	1	1	1
extremely high baseline water stress	-	-	-	-	1,390,166	1,130,181		2017	2018	2019	2020	2021	2022
From areas without water	_	_	_	_	3,652,398	3,762,843	Total water discharge	-	-	-	1,524,000	2,473,716	2,254,8
stress							To surface water	-	-	-	-	0	0
Recycled water (in cu	ubic meters)						To groundwater	_	_	_	_	0	0
	2017	2018	2019	2020	2021	2022	To sopurator					0	0
Total water recycled	469,000	673,000	854,000	643,000	580,223	265,906		-	-	-	-		0
3.2 Water consumpti	on						To third-party water (e.g. municipal sewers)	-	-	-	1,524,000	2,473,716	2,254,83
Water consumption (in cubic meter	·c)					Water discharge to ar	reas with wat	er stress (in cu	ubic meters)			
	2017	2018	2019	2020	2021	2022	-	2017	2018	2019	2020	2021	2022
	2017	2016	2019	2020	2021	2022	Total water discharge	_		_	1.524.000	2.473.716	2.254.8
Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,568,849	2,638,188							
Data centers total	-	-	-	2,197,000	162,477	2,510,686	Io areas with water stress	-	-	-	-	863,836	687,03
Offices total	-	-	-	73,000	2,406,372	127,502	To areas without water stress	-	-	-	-	1,609,879	1,567,80

rdehin Z / \\/-

3.4 Water Stewardsin	p.4 water stewardship								
Water restoration (in cubic meters)									
	2017	2018	2019	2020	2021	2022			
Volumetric water restoration benefits	-	132,000	145,000	2,250,000	2,335,672	2,351,562			

Progress on 2030 net positive water goal (in cubic meters)

	2017	2018	2019	2020	2021	202
Total water consumption	838,000	1,279,000	1,971,000	2,202,000	2,569,000	2,638,0
Total water restored	-	132,000	145,000	2,250,000	2,335,672	2,351,

Water use embedded in purchased electricity (In cubic meters)

	2017	2018	2019	2020	2021	202
Embedded consumption in purchased electricity - location-based	_	-	-	-	31,923,969	41,172,
Embedded consumption in purchased electricity - market-based	_	-	-	-	3,312,616	2,894,
Avoided water consumption	-	-	-	-	28,611,342	38,277

22

,000

1,562

22

2,356

4,787

7,569

At Meta, our sustainability work helps us to operate efficiently and responsibly in our mission to build community and bring the world closer together. As a global company, we recognize the tech industry' environmental impact and role to play in addressing climate change. We embrace the responsibility to understand the full scope of our footprint and be transparent and accountable in our mission to reduce our emissions.

Identifying the source of our emissions on an annual basis enables us to prioritize emissions reduction where we can make the most meaningful progress on our path to net zero emissions across our value chain in 2030. Similarly, minimizing our water use, being transparent with our water data, and restorin water in the same watersheds where our data centers are located are vital to reach our commitment restore more water than we use by 2030.

Meta's GHG emissions

Meta's GHG footprint includes the emissions associated with running our business and data centers, as FULL VALUE CHAIN EMISSIONS well as the indirect emissions upstream and downstream of our operations. These emissions correspond Scope 3 emissions come from sources within our full value chain beyond our operations and comprise the to Scope 1, Scope 2 and Scope 3 emissions as defined by the World Resources Institute (WRI) Greenhouse largest component of our footprint. Scope 3 includes: Gas Protocol 7. Meta uses the operational control approach when calculating our GHG footprint, in which we account for 100% of the GHG emissions over which we have operational control.

OPERATIONAL EMISSIONS

Scope 1 and 2 emissions are considered our operational emissions. Scope 1 emissions come from our direct operations, such as combustion of natural gas to heat our offices and the fuel burned in our employee shuttles. Scope 2 includes indirect emissions from purchased energy, such as the electricity powering our data centers. We consider purchased electricity for construction and overhead electricity within leased data centers outside of our operational control and therefore report these in Scope 3.

SCOPE 1 EMISSIONS Direct emissions from our data centers, offices and transportation fleet	 Stationary combustion (e.g., natural gas consumed at our Me Park campus for heating) Mobile combustion (e.g., diesel emissions from our intercam shuttles) Fugitive emissions (e.g., refrigerant losses)
SCOPE 2 EMISSIONS Indirect emissions from purchased energy for our data	Purchased electricityDistrict heating
centers and offices	 Stationary combustion from leased sites

In 2020, Meta reduced our operational emissions by 94% from a 2017 baseline and addressed the residual emissions with high-quality carbon removal projects. As a result, Meta's operations have produced net zero emissions since then.

- 1. Upstream emissions, such as the emissions from manufacturing our data center servers or emissions from employee commutes; and
- 2. Downstream emissions, such as the emissions associated with people using our Portal or Quest devices.

SCOPE 3 EMISSIONS Our value chain emissions	Upstream:
upstream and downstream of our operations	 Purchased goods and services (e.g., upstream emissions from purchased office supplies)
	 Capital goods (e.g., server hardware)
	 Fuel and energy-related activities
	 Upstream transportation and distribution (e.g., emissions associated with the transportation of AR/VR-related consun hardware)
	 Waste generated from our operations
	• Business travel
	 Employee commuting (including telecommuting)
	 Upstream leased assets (Including leased data center overhered electricity use)
	Downstream:
	 Downstream transportation and distribution
	 Direct use of our AR/VR-related consumer hardware
	 End-of-life treatment of our AR/VR-related consumer hardw

How we calculate our GHG emissions

- Meta is aligning our emissions reduction targets with the Science Based Targets initiative 7 and takes a m scientific, standardized approach to calculating its GHG emissions in accordance with the <u>GHG Protocol</u> $\overline{2}$. Furthermore, Meta's GHG emissions data and methodologies undergo third party verification each year. This is completed annually to ensure that only the most accurate and up-to-date data is publicly reported.
- We quantify our GHG emissions via activity data, LCAs and financial data. We prioritize calculating our ner emissions through activity data that directly measures an activity that results in GHG emissions, such as kilowatt hours (kWh) of electricity. Due to the complex nature of our business and value chain, we use other methods to help calculate our emissions when activity data is not available.

ead

We measure our emissions by metric tons of carbon dioxide equivalent, or CO₂e, units. CO₂e is used to standardize the emissions from different GHGs based on their global warming potentials.

ACTIVITY DATA

For activity data, we take the quantity of a specific measured activity and multiply it by an associated emissions factor to calculate the total emissions from that activity. For example, the kWh of electricity consumed at a Meta site is multiplied by the appropriate country-specific or regional-specific, publicly /are available emissions factor to calculate the total emissions from that site's electricity use. We use activity data to calculate:

- Scope 1 and 2 emissions
- Fuel and energy-related activities
- Waste generated in operations
- Upstream transportation and distribution where supplier specific data is available
- Business travel (including radiative forcing)
- Employee commuting
- Direct use of our AR/VR-related consumer hardware

Where activity data is incomplete or unavailable for an operation that results in GHG emissions, existing MARKET-BASED INSTRUMENTS activity data is used as a proxy to estimate these emissions. This ensures we are reporting a complete We have publicly committed to supporting its global operations with 100% renewable energy. We procure GHG inventory across all of our operations. For example, the weight of waste at several Meta sites is used and retire one Energy Attribute Certificate (EAC) for every MWh of electricity used to power our global as a proxy to estimate waste at other sites in the same region that do not have final waste weight data. operations. Meta also procures and retires one EAC for every MWh of electricity use in select Scope 3 categories.^A Additionally, Meta procures Sustainable Aviation Fuel (SAF) and applies the associated LCAs emissions reductions from SAF allocated in the reporting year as a market-based instrument to Category To understand cradle-to-gate emissions and/or upstream emissions that are released before certain assets 6: Business Travel.

are used (e.g., the emissions released from the production of concrete before it is poured), we conduct third-party LCA studies or utilize LCA tools to measure our impact. This is applicable in our 2022 inventory for the following emissions:

- Upstream emissions associated with the materials used in the construction of our data centers
- Upstream emissions of materials in office renovations and new construction
- Cradle-to-gate emissions of our augmented and virtual reality related consumer hardware, such as Portal and Quest devices
- Cradle-to-gate emissions in key data center hardware components, such as hard drives
- End-of-life treatment of our AR/VR-related consumer hardware

FINANCIAL

Our Environmentally Extended Input Output (EEIO) method utilizes financial spend data and applies industry-specific emission factors (e.g., kg CO₂e per dollar spent on electronic manufacturing) published by the U.S. Environmental Protection Agency (EPA) ↗ to calculate "cradle-to-gate" emissions. We apply the EEIO method to the following:

- Purchased goods and services
- Capital goods not related to data center and office construction, AR/VR-related consumer hardware, and key data center hardware components
- Upstream transportation and distribution where supplier specific data is unavailable
- Upstream leased assets

2023 Meta Sustainability Report

A core focus of Meta's renewable energy program is adding new renewable energy projects to the electricity grids that support our data centers to drive the transition to renewable energy in our communities. In alignment with these principles, Meta adheres to the following EAC market boundaries:

1. Owned data centers^B: EACs from the same grid region^C

2. Leased data centers^D: EACs from the same grid region or same geographic region^E

3. Other Scope 2 loads (offices, points-of-presence): EACs from same grid region or same geographic region

4. Scope 3 loads: EACs from same grid region; once exhausted, EACs from same geographic region

Meta's methodology aligns with the market boundaries set forth by the GHG Protocol for over 95% of our Scope 2 emissions, including for all Scope 2 emissions from our owned data centers. A small portion of our Scope 2 emissions are not covered by EACs within the GHG Protocol's market boundaries set forth, but are instead covered by EACs from within the same geographic region.

A. This includes data center construction in Category 1: Purchased Goods & Services, transmission and distribution loss in Category 3: Fuel & Energy Related Activities, employee work from home in Category 7: Employee Commuting, leased data center overhead electricity use in Category 8: Upstream Leased Assets, and United States-based electricity consumption from our products in Category 11: Use of Sold Products.

B. Owned data centers include all completed data centers owned and operated by Meta. Data center loads while under construction are treated in line with leased data centers.

D. For reporting year 2022, all leased data center load was in the United States and covered by EACs generated in-country.

E. Geographic Regions: Americas (AMER); Europe, Middle East, and Africa (EMEA); Asia Pacific (APAC)

C. Grid Regions: WECC, ERCOT, MISO/SPP, PJM/NC, SERC, Nordpool (Europe), Singapore/Southeast Asia

Improving our GHG methodology

As Meta decarbonizes our value chain over the next decade, the data and methodology that drives our The water that we use in our offices and at our data centers are withdrawn from our local water utilities climate work will evolve and improve each year. We have disclosed our Scope 1 and 2 emissions for the or local aquifers. We report our water withdrawals based on data from our local water utilities or meter data, where available. We also report our water withdrawal during construction, based on reported data last decade. We began reporting on some Scope 3 categories in 2015 and have reported on every relevant category defined by the GHG Protocol since 2019. As techniques to calculate our emissions improve, we from our construction partners. Not included in Meta's 2022 operational water withdrawal numbers are an will apply those methods to previous years to refine our GHG footprint. For example, in 2020 we used the additional 1,780,000 cubic meters of water withdrawn for the construction of Meta data centers. EPA's updated EEIO emission factors for our Scope 3 calculations and updated our 2019 data accordingly.

Going forward, we will focus on increasing accuracy and granularity of our data. For example, we rebaselined our 2020 data based on updated LCA data for key data center hardware and our AR/VR-relation consumer hardware. We will use activity data for more emissions categories as methods to do so become available. We will continue reporting and updating our emissions boundaries as our business grows on path to net zero emissions.

PUE/WUE

Each year, we calculate the Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE) of data centers. PUE measures how efficiently our data centers consume the energy to operate our serve and network infrastructure. It is calculated by dividing the energy consumed at the data center by IT electricity load. The closer our annual PUE is to "1" indicates how efficient our data centers are designed consume electricity.

Annual WUE is calculated by dividing our water withdrawal, in liters, by IT electricity load, in kWh. The closer WUE is to "0", the more efficient consumption of water to cool our IT-related infrastructure.

These metrics are calculated based on best available data, including internal meters, design estimates, and utility bills where applicable.

Meta's water withdrawal

Meta's water consumption

ated	For our data centers, we determine our water consumption via two methods:
ome our	1. Calculating the difference between water withdrawal and wastewater discharge
	2. Calculating consumption based on cycles of concentration from our cooling systems
	For our offices, we estimate our water consumption based on industry averages. All of our wastewater is discharged to local wastewater facilities.
of our ers	Water risk
ed to	We use water stress metrics in the WRI's <u>Aqueduct tool</u> to conduct initial assessments of our water risks. When appropriate, we increase the level of water risk based on additional local knowledge.

